Desolvation barrier effects are a likely contributor to the remarkable diversity in the folding rates of small proteins.
نویسندگان
چکیده
The variation in folding rate among single-domain natural proteins is tremendous, but common models with explicit representations of the protein chain are either demonstrably insufficient or unclear as to their capability for rationalizing the experimental diversity in folding rates. In view of the critical role of water exclusion in cooperative folding, we apply native-centric, coarse-grained chain modeling with elementary desolvation barriers to investigate solvation effects on folding rates. For a set of 13 proteins, folding rates simulated with desolvation barriers cover approximately 4.6 orders of magnitude, spanning a range essentially identical to that observed experimentally. In contrast, folding rates simulated without desolvation barriers cover only approximately 2.2 orders of magnitude. Following a Hammond-like trend, the folding transition-state ensemble (TSE) of a protein model with desolvation barriers generally has a higher average number of native contacts and is structurally more specific, that is, less diffused, than the TSE of the corresponding model without desolvation barriers. Folding is generally significantly slower in models with desolvation barriers because of their higher overall macroscopic folding barriers as well as slower conformational diffusion speeds in the TSE that are approximately 1/50 times those in models without desolvation barriers. Nonetheless, the average root-mean-square deviation between the TSE and the native conformation is often similar in the two modeling approaches, a finding suggestive of a more robust structural requirement for the folding rate-limiting step. The increased folding rate diversity in models with desolvation barriers originates from the tendency of these microscopic barriers to cause more heightening of the overall macroscopic folding free-energy barriers for proteins with more nonlocal native contacts than those with fewer such contacts. Thus, the enhancement of folding cooperativity by solvation effects is seen as positively correlated with a protein's native topological complexity.
منابع مشابه
Desolvation is a likely origin of robust enthalpic barriers to protein folding.
Experimental data from global analyses of temperature (T) and denaturant dependence of the folding rates of small proteins led to an intrinsic enthalpic folding barrier hypothesis: to a good approximation, the T-dependence of folding rate under constant native stability conditions is Arrhenius. Furthermore, for a given protein, the slope of isostability folding rate versus 1/T is essentially in...
متن کاملSpatial ranges of driving forces are a key determinant of protein folding cooperativity and rate diversity.
The physical basis of two-state-like folding transitions and the tremendous diversity in folding rates is elucidated by directly simulating the folding kinetics of 52 representative proteins. Relative to the results from a common modeling approach, the diversity of the simulated folding rates can be increased from ~10(2.1) to the experimental ~10(6.0) by a modest decrease in the spatial range o...
متن کاملChevron behavior and isostable enthalpic barriers in protein folding: successes and limitations of simple Gō-like modeling.
It has been demonstrated that a "near-Levinthal" cooperative mechanism, whereby the common Gō interaction scheme is augmented by an extra favorability for the native state as a whole, can lead to apparent two-state folding/unfolding kinetics over a broad range of native stabilities in lattice models of proteins. Here such a mechanism is shown to be generalizable to a simplified continuum (off-l...
متن کاملSolvation and desolvation effects in protein folding: native flexibility, kinetic cooperativity and enthalpic barriers under isostability conditions.
As different parts of a protein chain approach one another during folding, they are expected to encounter desolvation barriers before optimal packing is achieved. This impediment originates from the water molecule's finite size, which entails a net energetic cost for water exclusion when the formation of compensating close intraprotein contacts is not yet complete. Based on recent advances, we ...
متن کاملA Hidden Contributor to the Korean Miracle: The Korean Credit :union: Movement
Korean credit :::union:::s (CUs) are considered to be a hidden contributor to the “Korean miracle”, characterized by remarkable economic growth and relatively low income inequality. The Korean miracle not only generated wealth in an economically strapped and socially under-privileged people, but also contributed to regional community development and the democratization of Korean society. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 389 3 شماره
صفحات -
تاریخ انتشار 2009